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Attractor defining 

where truth lives

2

Attractor defining 

where forecast 

model lives



Climatological Distribution

• The distribution of states that results from running the 

true model for a long time, discretizing phase space, 

and counting the number of times the trajectory 

entered each cell of the discretization.

• In the limit as the number of cells and the length of the 

trajectory approaches infinity we obtain a pdf we label  
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( )climatological distribution tρ→ x



( )
The set of states for which

 0 tρ >x

Defining the True “Attractor”
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will be labeled  tA



Data Assimilation on the True Attractor

( ) ( ) ( )1 1 1t t tCρ ρ ρ= y xyx x

( ) climatological distributiontρ xStep j = 0:

Step j = 1:

( ) ( ) ( )2 1 2 2 1,t t tCρ ρ ρ=y y y x x yxStep j = 2:

M

( ) ( ) ( )1 2

Posterior Ob Likelihood Prior

, ,� � �t �t tCρ ρ ρ − −=Y y y yx x x K
14243 14243144424443Step j = N:

[ ]1 2 �=Y y y yLwhere all the observations are collected  together: 
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is invariant to DA

• The data assimilation problem is: 

( ) ( ) ( )1 2

Posterior Ob Likelihood Prior

, ,� � �t �t tCρ ρ ρ − −=Y y y yx x x K
14243 14243144424443
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Posterior Ob Likelihood Prior

• Because                       , the DA steps  j = 0  to  N

do not change the elements of   

( ) 0t�ρ >y x

where  the observations are [ ]1 2 �=Y y y yL



Attractor defining 

where truth lives

7

Attractor defining 

where forecast 

model lives



Defining the Forecast “Attractor”

( )
The set of states for which

 0 ρ >x
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( ) 0 

will be labeled  

f

f

ρ >x

A



True and Forecast “Attractors”
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True and Forecast “Attractors”
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We will label this function



The ‘smoothing operator’  F is interesting because it does not 

have an inverse.

True and Forecast “Attractors”
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This implies the lack of an inverse of F



True and Forecast “Attractors”

Not all true states can be represented by model states. 
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Representation Error



Some Examples of F

Daley (1993), Liu & Rabier (2002) assume that  the 

model state is a truncation in spectral space of a high 

resolution ‘true‘ state and write 
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They then derive an expression for the representation 

error for this operator.   Previously we have used this 

formulation to examine representation error using data 

from the Met Office High Resolution model. 



Experimental Results 

Standard Deviations of Representation Errors

Waller et al, QJ Royal Meteor Soc, 2014, 140: 1189 – 1197



Some Examples of F: Statistical

• One could define F from high and low-resolution 

forecasts

– Run mesoscale model over a season

– Run global model over the same season

[ ]� 1
ˆ ˆ ˆ ˆ ˆ, T T

ff f tt t t t

−
 = + − =  F F X X X Xx x x x

– Perform regression

[ ]
1

,t tf f

T T

f t t t

−
 = + − =  F F X X X Xx x xxLinear:

Quadratic:

15



Some Examples of F: Parameterized

• Lilly (1962) constructs a forecast model by choosing 

to simulate grid cell averages

– Parameterize sub-grid scale processes through 

grid cell averaged fluxes of heat, momentum, etc.

• This would be approximately equivalent to

tf =x Sx

where S is a smoothing operator.   
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Conversion Densities

• Map:

• Implication:  

– Given xt and F there is one and only one forecast 

state xf

( ) ( )( )ρ δ= −

( )tf =x F x

• This implies that

• Bayes’ Rule states that the “priors” are related by the 

conversion densities

( ) ( )( )t tf fρ δ= −xx F xx

( ) ( ) ( ) ( )1 2 1 2, ,... , ,...f t ft t� � �f �ρ ρ ρ ρ− − − −=y y yxx yxx xx
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Using the Conversion Densities: 

Forecast Prior

• We may map the true prior density onto the forecast 

models attracting manifold as:

( ) ( ) ( ), ,... , ,... dρ ρ ρ
∞

= ∫y y x xx x yx y

• This density describes the distribution of forecasts  xf
obtained from sampling from the true prior and 

mapping through F.

( ) ( ) ( )1 2 1 2, ,... , ,...f � � � �f t t tdρ ρ ρ− − − −
−∞

= ∫y y x xx x yx y
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Using the Conversion Densities: 

Forecast Posterior

• If there’s a forecast prior then there is a forecast 

posterior

( ) ( ) ( )1 2, ,...f f f� � � �Cρ ρ ρ − −= y yx xY yx
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( ) ( )

where

( ) ( ) ( )f f� t t t� dρ ρ ρ
∞

−∞

= ∫ x x xy x xy

Note that we have re-defined the goal of our DA!



High Resolution – True Model

t t= +x x Zη

We use a Gaussian model for 

which

where ( ),�η 0 1�~~
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T T

t = =P ZZ EΓE

( )

This model is constrained to 

produce  states consistent with 

The length of the “true” state 

vector is N.



Low Resolution – Forecast Model

1 2 T =  S E D T 0 E

tf =x Sx

Relate the forecasts and the 

true model

where 
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T

f t=P SPS

1 2 T

L
 =  S E D T 0 E

The low-resolution forecast is

constrained such that

The length of the “forecast” 

state vector is M.



Mean of Conversion Density

( ) ( )

( )

�f ff �� d

d

ρ

ρ

∞

−∞

∞

=

=

∫

∫

y yx

x

x

xx

y

xH

y

The model estimate of the 

observation is
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( )f t pf f f
 = + − H HG x xy xx

( )ft tt dρ
−∞

= ∫ x xxxH

Because our map is linear:

where

[ ]† †

p = =G Z SZ S



Observation Error Covariance Matrix

RepresentationInstrument

T T

f i= +R R HEΘE H
�����������

The observation error covariance matrix for this case is
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0, 1,...,

, 1,...,
i

i

i M

i M �

=
Θ = 

Γ = +

where ΘΘΘΘ is a diagonal matrix with a diagonal equal to



Observation Error Covariance Matrix

RepresentationInstrument

T T

f i= +R R HEΘE H
�����������

The observation error covariance matrix for this case is
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0, 1,...,

, 1,...,
i

i

i M

i M �

=
Θ = 

Γ = +

where ΘΘΘΘ is a diagonal matrix with a diagonal equal to

1. Representation error arises from truncation only!



Observation Error Covariance Matrix

RepresentationInstrument

T T

f i= +R R HEΘE H
�����������

The ob error covariance matrix is for this case
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0, 1,...,

, 1,...,
i

i

i M

i M �

=
Θ = 

Γ = +

where ΘΘΘΘ is a diagonal matrix with a diagonal equal to

2. Representation error is the covariance matrix of 

all the stuff the ob sees but the model does not.



Data Assimilation for Forecast States

1
T T

f f f f f f

−
 = + G P H H P H R

, fa f f = + − = − G v v v y Hx x x

The data assimilation algorithm for the forecast posterior mean is

Analysis:

Gain:

We choose this observation operator because the variance is 

correct up to its  M  eigenvalues!
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f f f f f f 

†

f ≡H HS

† † MT T T T T

f f f f

 
= =  

 

Γ 0
H P H HS P S H HE E H

0 0

Observation Operator:



We Get the Post-Processing for Free!

( ) †  = + −

Post-process the forecast back 

to the  true attractor:
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( ) †

p tf f f
 = + − x x xx Sx



Summary
• Representation error arises from truncation.

– The representation error covariance matrix is the 

covariance matrix of all the stuff the forecast model can’t 

see.

• Representation error should be accounted for by re-defining 

the observation operator such that it includes a “bias 

correction” algorithm for the forecast.correction” algorithm for the forecast.

• Algorithm:

– Use observations of true attractor to create states on 

forecast attractor.

– Use forecast model to integrate forecast states forward on 

forecast attractor.

– Post-process forecast back to true attractor.
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Hodyss & Nichols, Tellus A, 2015,  67,  24822



Pure Spectral Truncation: D = I
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Gaussian Smoother: D =/ I
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